ASSEMBLAGE ORGANIZATION IN STREAM FISHES: EFFECTS OF ENVIRONMENTAL VARIATION AND INTERSPECIFIC INTERACTIONS

1998 ◽  
Vol 68 (3) ◽  
pp. 395-420 ◽  
Author(s):  
Gary D. Grossman ◽  
Robert E. Ratajczak, Jr. ◽  
Maurice Crawford ◽  
Mary C. Freeman
2019 ◽  
Vol 128 (3) ◽  
pp. 672-680 ◽  
Author(s):  
Rayna C Bell ◽  
Christian G Irian

Abstract Although naturally heterogeneous environments can lead to mosaic hybrid zones, human-induced habitat fragmentation can also lead to environmental heterogeneity and hybridization. Here we quantify phenotypic and molecular divergence across a reed frog mosaic hybrid zone on São Tomé Island as a first step towards understanding the consequences of hybridization across this heterogeneous landscape. The São Tomé giant reed frog (Hyperolius thomensis) is strongly tied to cool, wet, forest habitats whereas the distribution of Moller’s reed frog (H. molleri) spans cool, wet, forests to warm, dry, disturbed habitats. Correspondingly, hybridization is concentrated in the more forested, cool, wet sites relative to non-forested, warmer, drier habitats. Four of six sites with hybrid frogs are artificial water bodies near the forest edge, indicating that both breeding habitat and broader scale environmental variation are probably important for understanding interspecific interactions and the extent of hybridization in this system. Phenotypic variation (body size and ventral coloration) largely tracks genetic and environmental variation across the hybrid zone with larger and more pigmented frogs occurring in forested, cool, wet habitats. Understanding whether human-induced changes in habitat break down reproductive barriers will be essential for conservation management of the less abundant, forest-associated H. thomensis in the face of rampant hybridization.


2016 ◽  
Author(s):  
Andrew T. Tredennick ◽  
Claire de Mazancourt ◽  
Michel Loreau ◽  
Peter B. Adler

AbstractTemporal asynchrony among species helps diversity to stabilize ecosystem functioning, but identifying the mechanisms that determine synchrony remains a challenge. Here, we refine and test theory showing that synchrony depends on three factors: species responses to environmental variation, interspecific interactions, and demographic stochasticity. We then conduct simulation experiments with empirical population models to quantify the relative influence of these factors on the synchrony of dominant species in five semiarid grasslands. We found that the average synchrony of per capita growth rates, which can range from 0 (perfect asynchrony) to 1 (perfect synchrony), was higher when environmental variation was present (0.62) rather than absent (0.43). Removing interspecific interactions and demographic stochasticity had small effects on synchrony. For the dominant species in these plant communities, where species interactions and demographic stochasticity have little influence, synchrony reflects the covariance in species responses to the environment.


2016 ◽  
Vol 553 ◽  
pp. 93-109 ◽  
Author(s):  
L Ramajo ◽  
L Prado ◽  
AB Rodriguez-Navarro ◽  
MA Lardies ◽  
CM Duarte ◽  
...  

2020 ◽  
Vol 650 ◽  
pp. 269-287
Author(s):  
WC Thaxton ◽  
JC Taylor ◽  
RG Asch

As the effects of climate change become more pronounced, variation in the direction and magnitude of shifts in species occurrence in space and time may disrupt interspecific interactions in ecological communities. In this study, we examined how the fall and winter ichthyoplankton community in the Newport River Estuary located inshore of Pamlico Sound in the southeastern United States has responded to environmental variability over the last 27 yr. We relate the timing of estuarine ingress of 10 larval fish species to changes in sea surface temperature (SST), the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, wind strength and phenology, and tidal height. We also examined whether any species exhibited trends in ingress phenology over the last 3 decades. Species varied in the magnitude of their responses to all of the environmental variables studied, but most shared a common direction of change. SST and northerly wind strength had the largest impact on estuarine ingress phenology, with most species ingressing earlier during warm years and delaying ingress during years with strong northerly winds. As SST warms in the coming decades, the average date of ingress of some species (Atlantic croaker Micropogonias undulatus, summer flounder Paralichthys dentatus, pinfish Lagodon rhomboides) is projected to advance on the order of weeks to months, assuming temperatures do not exceed a threshold at which species can no longer respond through changes in phenology. These shifts in ingress could affect larval survival and growth since environmental conditions in the estuarine and pelagic nursery habitats of fishes also vary seasonally.


Sign in / Sign up

Export Citation Format

Share Document